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Abstract—Concerns about privacy in outsourced cloud
databases have grown recently and many efficient and scalable
query processing methods over encrypted data have been
proposed. However, there is very limited work on how to se-
curely process top-k ranking queries over encrypted databases
in the cloud. In this paper, we propose the first efficient
and provably secure top-k query processing construction that
achieves adaptive CQA security. We develop an encrypted
data structure called EHL and describe several secure sub-
protocols under our security model to answer top-k queries.
Furthermore, we optimize our query algorithms for both
space and time efficiency. Finally, we empirically evaluate our
protocol using real world datasets and demonstrate that our
construction is efficient and practical.

Keywords-database security; data privacy; privacy-
preserving query processing; top-k query;

I. INTRODUCTION

As remote storage and cloud computing services emerge,

such as Amazon’s EC2, Google AppEngine, and Microsoft’s

Azure, many enterprises, organizations, and end users may

outsource their data to those cloud service providers for

reliable maintenance, lower cost, and better performance.

In fact, a number of database systems on the cloud have

been developed recently that offer high availability and

flexibility at relatively low costs. However, due to security

and privacy concerns [4], many users refrain from using

these services, especially users with sensitive and valuable

data. Indeed, data owners and clients may not fully trust a

public cloud since a hacker or the cloud’s administrator with

root privileges can fully access all the data. Furthermore,

the cloud provider may sell its business to an untrusted

company, which will also have full access to the data.

One approach to address these issues is to encrypt the

data before outsourcing them to the cloud. Encrypted data

can bring enhanced security into the Database-As-Service

environment [22]. However, it also introduces significant

difficulties in querying and computing over these data.

Although top-k queries are important query types in many

database applications [25], to the best of our knowledge,

none of the existing works handle top-k queries on encrypted

data efficiently. Instead of encrypting the data, Vaiyda et.

al. [39] studied privacy-preserving top-k queries in which

the data are vertically partitioned. Wong et. al. [41] proposed

an encryption scheme for k-Nearest-Neighors (kNN) queries

and mentioned a method of transforming their scheme

to solve top-k queries, however, as shown in [42], their

encryption scheme is not secure and is vulnerable to chosen

plaintext attacks. In this paper, we propose the first Chosen-
Query-Attack (CQA) secure query processing scheme over

encrypted databases that can answer top-k queries effi-

ciently.

We assume that the data owner and the clients are trusted,

but not the cloud server. Therefore, the data owner encrypts

each database relation R using some probabilistic encryption

scheme before outsourcing it to the cloud. An authorized

user specifies a query q and generates a token to query

the server. Our objective is to allow the cloud to securely

compute the top-k results based on a user-defined ranking

function over R, and, more importantly, the cloud should not

learn anything about R or q. Consider a real world example

for a health medical database below:

Example 1. An authorized doctor, Alice, wants to get
the top-k results based on some ranking criteria from the
encrypted electronic health record database patients
(Table I). The encrypted patients may contain several
attributes; here we only list a few in Table I: patient name,

age, id number, trestbps1, chol2, thalach3.

patient name age id trestbps chol thalach

E(Bob) E(38) E(121) E(110) E(196) E(166)
E(Celvin) E(43) E(222) E(120) E(201) E(160)
E(David) E(60) E(285) E(100) E(248) E(142)
E(Emma) E(36) E(956) E(120) E(267) E(112)
E(Flora) E(43) E(756) E(100) E(223) E(127)

Table I: Encrypted patients Heart-Disease Data

One example of a top-k query (in the form of a SQL
query) can be: SELECT * FROM patients ORDERED
BY chol+thalach STOP AFTER 2. That is, the doc-
tor wants the top-2 results based on chol+thalach from the
patient records. However, since this table contains sensitive
information about patients, the data owner first encrypts the
table and then delegates it to the cloud. So, Alice requests a
key from the data owner and generates a query token based
on the query. Then the cloud computes on the encrypted table

1trestbps: resting blood pressure (in mm Hg)
2chol: serum cholesterol in mg/dl
3maximum heart rate achieved
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to find the encrypted top-2 results that returns to Alice. In
this case, the top-2 results are the records of patients David
and Emma.

Our protocol extends the No-Random-Access (NRA) [19]

algorithm for computing top-k queries over a probabilisti-

cally encrypted relational database. Moreover, our query pro-

cessing model uses two non-colluding semi-honest clouds,

which is a model that has been used in some recent works

as well (see [7, 10, 11, 18]). We encrypt the database in

such a way that the server can obliviously execute NRA

over the encrypted database without learning the underlying

data. This is accomplished with the help of a secondary

independent cloud server (or Crypto Cloud). However, the

encrypted database resides only in the primary cloud. We

adopt two efficient state-of-art secure protocols, EncSort [7]

and EncCompare [10], which are the two main building

blocks we need in our top-k secure construction. We choose

these two protocols mainly because of their efficiency. In

addition, we propose several novel sub-routines that can

securely compute the best/worst score and de-duplicate

replicated data items over the encrypted database. Notice

that our proposed sub-protocols can also be used as stand-

alone building blocks for other applications as well. We also

would like to point out that during the querying phase the

computation performed by the client is very small. The client

only needs to compute a simple token for the server and

after receiving the results, decrypt the encrypted records.

All of the relatively heavier computations are performed by

the cloud side.

Below we summarize our main contributions:

• We propose a new practical protocol designed to answer

top-k queries over encrypted relational databases.

• We propose a new data structure called EHL which

allows the servers to homomorphically evaluate the

equality relation between two objects.

• We propose several independent sub-protocols such that

the main server can securely compute the best/worst

scores and de-duplicate replicated encrypted objects

with the use of another non-colluding server.

• We prove that our scheme is CQA secure, extending the

security definition from [13]. Both data confidentiality
and query privacy are protected.

• The scheme is experimentally evaluated using real-

world datasets and the results show that our scheme

is efficient and practical.

II. RELATED WORK

The problem of processing queries over outsourced en-

crypted databases is not new. The seminal work of Hacigu-

mus et al. [22] proposed executing SQL queries over en-

crypted data in the Database-As-Service model using buck-

etization. Since then, a number of works have appeared on

executing various query types over encrypted data.

A significant amount of work has been devoted on key-

word search queries or boolean queries, such as [9, 12,

15, 38]. Another work [37] proposed a general framework

for boolean queries of disjunctive normal form queries on

encrypted data. In addition, many works have been proposed

for range queries [24, 29] and graph queries [32]. Other

relevant works include privacy-preserving data mining [3,

27, 30, 40].

Recent works in the cryptography community have shown

that it is possible to perform arbitrary computations over

encrypted data using fully homomorphic encryption [20], or

Oblivious RAM [21]. However, the performance overheads

of such constructions are very high in practice; thus they’re

not suitable for practical database queries. Some recent

advancements in ORAM [36] show promise and can be

potentially used in certain environments. As mentioned, [39]

is the only work that studied privacy preserving execution

of top-k queries. However, their approach is mainly based

on the k-anonymity privacy policies, therefore, it cannot

be extended to encrypted databases. Recently, differential

privacy [17] has emerged as a powerful model to protect

against unknown adversaries with guaranteed probabilistic

accuracy. However, here we consider encrypted data in the

outsourced model; moreover, we do not want our query

answer to be perturbed by noise, instead we want the results

to be exact. [28] proposed a scheme that leverages DP

and leaks obfuscated access statistics to enable efficient

searching. Another approach has been extensively studied

is order-preserving encryption [3, 35], which preserves the

order of the message. We note that, by definition, OPE

directly reveals the order of the objects’ ranks, thus does

not satisfy our data privacy guarantee. Furthermore, [23]

proposed a prototype for access control using deterministic

proxy encryption. Finally, other secure database systems

have been proposed by using embedded secure hardware,

such as TrustedDB [6] and Cipherbase [5].

Secure kNN queries. One of the most relevant problems

is answering kNN (k Nearest Neighbor) queries. Note that

top-k queries should not be confused with similarity search,

such as kNN queries. For kNN queries, one is interested

in retrieving the k most similar objects from the database

to a query object, where the similarity between two objects

is measured over some metric space, for instance using the

L2 metric. Many works have been proposed to specifically

handle kNN queries on encrypted data, such as [14, 41, 42].

A recent work [18] proposed secure kNN query under the

same architectural setting as ours. We would like to point out

that their solution does not directly solve the problem of top-

k queries. In particular, [18] designed a protocol for ranking

distances between the query point and the records using the

L2 metric, while we consider the top-k selection query based

on a class of scoring functions using linear combinations of

attribute values. Nevertheless, if we follow the similar setup
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from [18], we can define the scoring function to be the sum

of the squares, i.e.
∑

x2
i (o), where xi(o) is the i-th attribute

value for object o and is a positive value. Then one can

adapt the secure kNN scheme by querying a large enough

query point (say, the upper bound of the attribute value)

to get the k-nearest-neighbors and therefore it can return

top-k results. We show in Section X-C, that even under

this particular setting, our protocol is much more efficient

than [18]. The computational complexity, for each query,

for [18] is at least O(nm), where n is the number of records

in the database and m the number of attributes. Furthermore,

the communication overhead between the two clouds is also

O(nm). Thus, this protocol is not very efficient for even

small sized databases.

III. PRELIMINARIES

A. Problem Definition

Consider a data owner that has a database relation R of

n objects, denoted by o1, ..., on, and each object oi has M
attributes. For simplicity, we assume that all M attributes

take numerical values. Thus, the relation R is an n × M
matrix. The data owner would like to outsource R to a

third-party cloud S1 that is untrusted. Therefore, the data

owner encrypts R and sends the encrypted relation ER to

the cloud. After that, any authorized client should be able to

get the results of a top-k query over this encrypted relation

directly from S1, by specifying k and a score function over

the M (encrypted) attributes. We consider monotone scoring

(ranking) functions that are weighted linear combinations

over all the attributes, that is, FW (o) =
∑

wi × xi(o),
where each wi ≥ 0 is a user-specified weight for the i-
th attribute and xi(o) is the local score (value) of the i-th
attribute for object o. Note that we consider monotone linear

functions because they are the most important and widely

used scoring functions for top-k queries [25]. The results of

a top-k query are the objects with the highest k FW values.

For example, consider an authorized client, Alice, who wants

to run a top-k query over the encrypted relation ER. Consider

the following query: q = SELECT * FROM ER ORDER BY

FW (·) STOP AFTER k; That is, Alice wants to get the top-

k results based on her scoring function FW , for a specified

set of weights. Alice first has to request the keys from the

data owner, then generates a query token tk. Alice sends

the tk to the cloud server. The cloud server storing the

encrypted database ER processes the top-k query and sends

the encrypted results back to Alice that she decrypts using

the secret key. In the real world scenarios, the authorized

clients can locally store the keys for generating the token

and decryption.

B. Our Architecture and Security Model

We consider secure computations on the cloud under

the semi-honest (or honest-but-curious) adversarial model.

Furthermore, our model assumes the existence of two differ-
ent non-colluding semi-honest cloud providers, S1 and S2,

where S1 stores the encrypted database ER and S2 holds

some secret keys and provides crypto services. We refer

to the server S2 as the Crypto Cloud and we assume that

it is isolated from S1. The two parties S1 and S2 do not

trust each other, and therefore, they have to execute secure

computations on encrypted data. In fact, crypto clouds have

been built and used in some industrial applications today

(e.g., the pCloud Crypto4 or boxcryptor5). This model is

not new and has already been widely used in related work,

such as [7, 10, 11, 18, 31]. We emphasize that these cloud

services are typically provided by some large companies,

such as Amazon, Google, and Microsoft, who have also

commercial interests not to collude. The intuition behind

such an assumption is as follows. Most of the cloud service

providers in the market are well-established IT companies,

such as Amazon AWS, Microsoft Azure and Google Cloud.

Therefore, a collusion between them is highly unlikely as

it will damage their reputation which effects their revenues.

When S1 receives the query token, S1 initiates the secure

computation protocol with S2. Figure 1 shows an overview

of the architecture.

Authorized 
Clients

��� ���

�

���	
���
����

query token

Encrypted top-k answer

Crypto Cloud S2

Cloud S1

��������
�
����

Data Owner

Figure 1: An overview of our model

Security Model. We adapt a security definition from

the searchable encryption literature ([12, 13, 15]), which

has been widely accepted in the prior privacy preserving

database query works. In this paper, we capture the security

requirement using a simulation-based security definition,

which we refer as CQA (Chosen-Query-Attack) security, ex-

tending the definition from [13, 15]. We choose the CQA be-

cause it is more natural to our problem and better describes

the security properties of our construction. Throughout the

paper, the non-colluding clouds S1 and S2 are semi-honest

adversarial servers. In our construction, S1 and S2 learn

nothing about the data except a small amount of leakage that

we explicitly describe. We give the details in Section VIII

and the proof of security can be found in the full version

of this paper [33]. We would like to emphasize that, during

the execution of the query processing, neither of the servers

S1 or S2 can retrieve the original data.

4https://www.pcloud.com/encrypted-cloud-storage.html
5https://www.boxcryptor.com/en/provider
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C. Cryptographic Tools

Paillier Cryptosystem. The Paillier cryptosystem [34] is

a semantically secure public key encryption scheme. The

message space M for the encryption is ZN , where N is a

product of two large prime numbers p and q. For a message

m ∈ ZN , we denote Encpk(m) ∈ ZN2 to be the encryption

of m with the public key pk. When the key is clear in the

text, we simply use Enc(m) to denote the encryption of m
and Decsk(c) to denote the decryption of a ciphertext c. The

details of encryption and decryption algorithm can be found

in [34]. It has the following homomorphic properties:

• Addition: ∀x, y ∈ ZN , Enc(x) · Enc(y) = Enc(x+ y)
• Scalar Multiplication: ∀x, a ∈ ZN , Enc(x)a = Enc(a ·
x)

Damgård-Jurik cryptosystem. Our construction also re-

lies on a Damgård-Jurik (DJ) cryptosystem introduced by

Damgård and Jurik [16], which is a generalization of Paillier

encryption. The message space M expands to ZNs for

s ≥ 1, and the ciphertext space is under the group ZNs+1 . As

mentioned in [2], this generalization allows one to doubly
encrypt messages and use the additive homomorphism of

the inner encryption layer under the same secret key. In

particular, let E2(x) denote an encryption of the DJ scheme

for a message x ∈ ZN2 (when s = 2) and Enc(x) be a

normal Paillier encryption.

This extension allows a ciphertext of the first layer

to be treated as a plaintext in the second layer. More-

over, this nested encryption preserves the structure over

inner ciphertexts and allows one to manipulate it as fol-

lows: E2
(
Enc(m1)

)Enc(m2) = E2
(
Enc(m1) · Enc(m2)

)
=

E2
(
Enc(m1 +m2)

)
. We note that this is the only homomor-

phic property that our construction relies on. Throughout this

paper, we use ∼ to denote that the plaintext under encryption

Enc are the same, i.e., Enc(x) ∼ Enc(y)⇒ x = y. We sum-

marize the notation throughout this paper in Table II. Note

that in our application, we need one layered encryption; that

is, given E2(Enc(x)), we want a normal Paillier encryption

Enc(x). As introduced in [7], this could simply be done with

the help of S2. However, we need a protocol RecoverEnc to

securely remove one layer of encryption.

D. No-Random-Access (NRA) Algorithm

The NRA algorithm [19] finds the top-k answers by

exploiting only sorted accesses to the relation R. The

input to the NRA algorithm is a set of sorted lists S,

each ranks the “same” set of objects based on different

attributes. The output is a ranked list of these objects

ordered by the aggregate ranking scores. We opted to use

this algorithm because it provides a scheme that leaks

minimal information to the cloud server. We assume that

each column (attribute) is sorted independently to create a

set of sorted lists S. The set of sorted lists is equivalent

to the original relation, but the objects in each list L are

Notation Definition
n Size of the relation R, i.e. |R| = n
M Total number of attributes in R
m Total number of attributes for the query q

Enc(m) Paillier encryption of m
Dec(c) Paillier decryption of c
E2

(
m
)

Damgård-Jurik (DJ) encryption of m
Enc(x) ∼ Enc(y) Denotes x = y, i.e. Dec(Enc(x)) = Dec(Enc(y))

EHL(o) Encrypted Hash List of the object o
�, � EHL randomized operations, see Section V-A.

Idi The data item in the ith sorted list Li at depth d

E(Idi ) Encrypted data item Idi
Bd(o) The best score (upper bound) of o at depth d

W d(o) The worst score (lower bound) of o at depth d

Table II: Notation Summarization

sorted in descending order according to their local scores

(attribute values). After sorting, R contains M sorted lists,

denoted as S = {L1, L2, . . . , LM}. Each sorted list consists

of n data items, denoted as Li = {I1i , I2i , . . . , Ini }. Each

data item is a object/value pair Idi = (odi , x
d
i ), where odi and

xd
i are the object id and local score at the depth d (when d

objects have been accessed under sorted access in each list)

in the ith sorted list respectively. Since NRA produces the

top-k answers using upper/lower bounds it may not report

the exact object scores. The score lower bound of some

object o, W (o), is obtained by applying the ranking function

on o’s known scores and the minimum possible values of

o’s unknown scores. The score upper bound of o, B(o),
is obtained by applying the ranking function on o’s known

scores and the maximum possible values of o’s unknown

scores, which are the same as the last seen scores in the

corresponding ranked lists. The algorithm reports a top-k
object even if its score is not precisely known. Specifically,

if the score lower bound of an object o is not below the score

upper bounds of all other objects (including unseen objects),

then o can be safely reported as the next top-k object.

Security Remark. We choose to use NRA because it does

not reveal the access patterns. It provides a scheme that leaks

minimal information to the cloud server (since during query

processing there is no need to access intermediate objects).

We never access the actual records in our protocol and the

user can decide how to access them at the end (we will

discuss later).

IV. SCHEME OVERVIEW

In this section, we give an overview of our scheme.

Definition 2. Let SecTopK = (Enc,Token, SecQuery) be
the secure top-k query scheme containing three algorithms
Enc, Token and SecQuery.
• Enc(λ,R): is a probabilistic encryption algorithm that

takes relation R and security parameter λ as its inputs
and outputs encrypted relation ER and secret key K.

• Token(K, q, k): takes a secret key K, a query q, the
parameter k for top-k, and outputs a token tkq .
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• SecQuery(tk,ER) is the query processing algorithm
that takes tk and ER and securely computes top-k
results based on the tk.

As mentioned earlier, our encryption scheme takes ad-

vantage of the NRA algorithm. The idea of Enc is to

encrypt and permute the set of sorted lists for R, so that

the server can execute a variation of the NRA algorithm

using only sequential accesses to the encrypted lists. To do

this encryption, we design a new encrypted data structure,

called EHL. The Token computes a token that serves as a

‘trapdoor’ so that the clouds know which list to access. In

SecQuery, S1 scans the encrypted lists depth by depth, for

each targeted list, maintaining a list of encrypted objects

per depth until there are k encrypted objects satisfying the

NRA halting condition. During this process, S1 and S2

learn nothing about the underlying scores and objects. At

the end of the protocol, the encrypted object ids can be

reported to the client that can decrypt them. As we discuss

next, there are two options after that. Either the records are

retrieved and decrypted by the client, or the client retrieves

the records using oblivious RAM [21] that does not even

reveal the location of the actual encrypted records. In the

first case, the server can get some additional information by

observing the access patterns, i.e. the encryptions of different

queries. However, there are schemes that address this access

leakage [26, 28] and is beyond the scope of this paper. The

second approach may be very expensive but is more secure.

V. DATABASE ENCRYPTION

A. Encrypted Hash List (EHL)

We propose a new computation- and space- efficient data

structure called encrypted hash list (EHL) to encrypt each

object. The main purpose of this structure is to allow a server

to homomorphically compute equality between two objects,

whereas it is computationally hard for the server to figure out

which these objects are. The intuition of designing the EHL
is to use Pseudo-Random Function (PRF) F to first compute

s ‘secure hashes’ of the object o and homomorphically

encrypt them. Let EHL(o) be the encrypted list of an object

o and let EHL(o)[i] denote the ith encryption in the list. In

particular, we initialize an empty list EHL of length s. Then,

we generate s secure keys κ1, ..., κs and object o is hashed to

EHL as follows: for 1 ≤ i ≤ s, let EHL(o)[i] = Enc(Fκi
(o)).

Lemma 3. Given two objects o1 and o2, their EHL(o1) and
EHL(o2) are computationally indistinguishable.

It is easy to see that Lemma 3 holds since the encrypted
values in the EHL are encrypted by the semantically secure
Paillier encryption. Given EHL(x) and EHL(y), we define
the randomized operation � between EHL(x) and EHL(y)
below:

EHL(x)� EHL(y)
def
=

s−1∏

i=0

(
EHL(x)[i] · EHL(y)[i]−1)ri (1)

where each ri is some random value in ZN .

Lemma 4. Let Enc(b) = EHL(x)� EHL(y), then b = 0 if
x = y (two objects are the same), otherwise b is uniformly
distributed in the group ZN with high probability.

Proof Sketch: If x and y are the same, then for all i ∈ [s],
xi = yi. Then,

s−1∏
i=0

(EHL(x)[i] · EHL(y)[i]−1
)
ri = Enc

( s−1∑
i=0

(ri(xi − yi))
)
= Enc(0)

If x 	= y, w.h.p. it must be true that there exists

some i ∈ [s] such that Fκi(x) 	= Fκi(y), i.e. the plain-

texts are different in EHL(x)[i] and EHL(y)[i]. Therefore,(
EHL(x)[i] · EHL(y)[i]−1

)ri
= Enc(ri(Fκi

(x) − Fκi
(y)).

Hence, based on the definition �, it follows that b becomes

a random value uniformly distributed in the group ZN . �

False Positive Rate. Assuming F is a Pseudo-Random

Function, the probability that the secure hashed values

collide is at most 1
Ns . Taking the union bound gives that

the FPR is at most
(
n
2

)
1
Ns ≤ n2

Ns . Notice that N ≈ 2λ is

large number as N is the product of two large primes p and

q in the Paillier encryption and λ is the security parameter.

For instance, if we set N to be a 1024 bit number and s = 4
or 5, then the FPR is negligible even for billions of records.

Remark. Note that we cannot simply encrypt the objects

with Pallier encryption and then homomorphically evaluate

whether they’re equal or not. As we can see in the following

sections, one of the servers needs to learn the equality

bit. For example, if we homomorphically subtract the two

objects, the difference reveals a lot of information besides

the equality bit. The proposed EHL guarantee that we

only reveal the equality bit if x = y when we decrypt

EHL(x)� EHL(y).

Notation. We introduce some notation that we use in our

construction. Let x = (x1, . . . , xs) ∈ Z
s
N and let the encryp-

tion Enc(x) denotes the concatenation of Enc(x1)...Enc(xs).
Also, we denote by � the block-wise multiplication between

Enc(x) and EHL(y); that is, c ← Enc(x) � EHL(y), where

ci ← Enc(xi) · EHL(y)[i] for i ∈ [1, s].

B. Database Encryption

We describe the database encryption procedure Enc in this

section. Given a relation R with M attributes, the data owner

first encrypts the relation using Algorithm 1.

In ER, each data item Idi = (odi , x
d
i ) at depth

d in the sorted list Li is encrypted as E(Idi ) =
〈EHL(odi ),Encpkp(xd

i )〉. As all the score has been encrypted

under the public key pkp, for the rest of the paper, we

simply use Enc(x) to denote Encpkp(x) under the public

key pkp. Besides the size of the database and M , the

encrypted ER doesn’t reveal anything. In Theorem 5, we

demonstrate this by showing that two encrypted databases

are indistinguishable if they have the same size and number

of attributes.
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Algorithm 1: Database encryption

1 Generate a public/secret key pkp, skp for the Paillier
encryption and secret keys κ1, . . . , κs for EHL;

2 Given the relation R, sort each Li in descending order based
on the attribute’s value for 1 ≤ i ≤ M ;

3 Do sorted access in parallel to each of the M sorted lists Li;

4 foreach data item Ii = 〈odi , xd
i 〉 ∈ Li do

5 foreach depth d do
6 Compute EHL(odi ) using the keys κ1, . . . , κs;

7 Compute Encpkp(x
d
i ) using pkp;

8 Store E(Idi ) = 〈EHL(odi ),Encpkp(xd
i 〉) at depth d;

9 Generate a secret key kp for a pseudorandom permutation P .
For 1 ≤ i ≤ M , permute Li as LPkp (i);

10 Finally, output all lists of permuted encrypted items as the
encrypted relation as ER;

11 The data owner securely uploads the keys pkp, skp to the S2,
and only pkp to S1. Furthermore, it securely distribute the
secrete keys (skp, kp and κ1, . . . , κs) to its authorized
client.

Theorem 5. Given two relations R1 and R2 with |R1| =
|R2| and same number of attributes. The ER1 and ER2

output by the algorithm Enc are indistinguishable.
It’s easy to see that the theorem holds based on Lemma 3

and the Paillier encryption scheme.

VI. QUERY TOKEN

Consider the SQL-like query q = SELECT * FROM ER

ORDERED BY FW (·) STOP BY k, where FW (·) is a weighted

linear combination of all attributes. In this paper, to simplify

our presentation of the protocol, we consider binary weights

and therefore the scoring function is just a sum of the

values of a subset of attributes. However, notice that for

non {0, 1} weights the client should provide these weights

to the server and the server can simply adapt the same

techniques by using the scalar multiplication property from

Paillier before it performs the rest of the protocol which

we discuss next. On input the key kp and query q, the

Token algorithm is quite simple and works as follows: the

client specifies the scoring attribute set M of size m, i.e.

|M| = m ≤ M , then requests the key kp from the data

owner, where kp is the key corresponds to the Pseudorandom

Permutation P . Then the client computes the Pkp
(i) for

each i ∈ M and sends the following query token to the

cloud server S1: tkq = SELECT * FROM ER ORDERED BY

{Pkp
(i)}i∈M STOP BY k.

VII. TOP-K QUERY PROCESSING

As mentioned, our query processing protocol is based on

the NRA algorithm. However, the technical difficulty is to

execute the algorithm on the encrypted data while S1 does

not learn any object id or any score and attribute value of

the data. We incorporate several cryptographic protocols to

achieve this. Our query processing uses two state-of-the-art

efficient and secure protocols: EncSort introduced by [7]

Algorithm 2: Top-k Query Processing: SecQuery

1 S1 receives tkq from the client, parses tkq and let Li = LPK (j) for j ∈ M;

2 foreach depth d at each list do
3 foreach E(Id

i ) = 〈EHL(odi ), Enc(x
d
i )〉 ∈ Li do

4 Compute Enc(Wd
i ))← SecWorst(E(Id

i ), H, pkp, skp), where

H = {E(Id
j )}j∈m,i �=j ;

5 Compute Enc(Bd
i )← SecBest(E(Id

i ), {j}j �=i, pkp, skp);

6 Run Γd ← SecDedup({E(Id
i )}, pkp, skp) with S2 and get the local

encrypted list Γd;

7 Run Td ← SecUpdate(Td−1,Γd, pkp, skp) with S2 and get Td;

8 If |Td| < k elements, go to the next depth. Otherwise, run

EncSort(Td) by sorting on Enc(Wi), get first k items as Td
k ;

9 Let the kth and the (k + 1)th item be E(I′k) and E(I′k+1), S1 then

runs f ← EncCompare(E(W ′
k), E(B′k+1)) with S2, where

E(W ′
k) is the worst score for E(I′k), and E(B′k+1) is the best score

for E(I′k+1) in Td;

10 if f = 0 then
11 Halt and return the encrypted first k item in Td

k

and EncCompare introduced by [10] as building blocks. We

skip the detailed description of these two protocols since

they are not the focus of this paper. Here we only describe

their functionalities:

1). EncSort: S1 has a list of encrypted keyed-value pairs

(Enc(k1),Enc(a1))...(Enc(km),Enc(am)) and a public key

pk, and S2 has the secret key sk. At the end, S1 obtains a list

new encryptions (Enc(k′1),Enc(a
′
1))...(Enc(k

′
m),Enc(a′m)),

where the key/value list is sorted based on the order a′1 ≤
a′2... ≤ a′m and the set {(k1, a1), ..., (km, am)} is the same

as {(k′1, a′1), ..., (k′m, a′m)}.
2). EncCompare(Enc(a),Enc(b)): S1 has a public key pk

and two encrypted values Enc(a),Enc(b), while S2 has the

secret key sk. At the end of the protocol, S1 obtains the

bit f such that f := (a < b). Several protocols have been

proposed for the functionality above. We choose the one

from [10] mainly because it is efficient and perfectly suits

our requirements.

A. Query Processing: SecQuery

Notations. We denote each encrypted item by E(I) =
〈EHL(o),Enc(x)〉, where I is the item with object id

o and score x. During the query processing, the server

S1 needs to maintain the encrypted item with its cur-

rent best or worst scores, and we denote by E(I) =
(EHL(o),Enc(W ),Enc(B)) the encrypted score item I with

object id o with best score B and worst score W . We first

give the overall description of the top-k query processing

SecQuery at a high level. Then in Section VII-B, we describe

in details the secure sub-routines that we use in the query

processing: SecWorst, SecBest, SecDedup, and SecUpdate.

As mentioned, SecQuery makes use of the NRA algorithm

but is different from the original NRA, because SecQuery
cannot maintain the global worst/best scores in plaintext.

Instead, SecQuery has to run secure protocols depth by depth

and homomorphically compute the worst/best scores based

on the items at each depth. In particular, upon receiving
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Score List
Lower 
Bound

Upper 
Bound

���(X1) ���(10) ���(26)

���(X2) ���(8) ���(26)

���(X4) ���(8) ���(26)

T1

depth 1

R1

���(X1) ���(10)
���(X2) ���(8)
���(X3) ���(5)
���(X4) ���(3)
���(X5) ���(1)

R2

���(X2) ���(8)
���(X3) ���(7)
���(X1) ���(3)
���(X4) ���(2)
���(X5) ���(1)

R3

���(X4) ���(8)
���(X3) ���(6)
���(X1) ���(2)
���(X5) ���(1)
���(X2) ���(0)

(a) SecWorst & SecBest at depth 1. T 1 maintains the encrypted

scores after depth 1.
T2

depth 2

Score List
Lower 
Bound

Upper 
Bound

���(X2) ���(16) ���(22)
���(X3) ���(13) ���(21)
���(X1) ���(10) ���(23)
���(X4) ���(8) ���(23)
���(R2) ���(Z) ���(22)
���(R3) ���(Z) ���(23)

R1

���(X1) ���(10)
���(X2) ���(8)
���(X3) ���(5)
���(X4) ���(3)
���(X5) ���(1)

R2

���(X2) ���(8)
���(X3) ���(7)
���(X1) ���(3)
���(X4) ���(2)
���(X5) ���(1)

R3

���(X4) ���(8)
���(X3) ���(6)
���(X1) ���(2)
���(X5) ���(1)
���(X2) ���(0)

(b) SecWorst & SecBest at depth 2. T 2 maintains the sorted

encrypted scores based on their worst scores after depth 2. Note that,

after SecDedup, the duplicated objects X1, X2 do not appear in the

top-k list twice.

Score List

Lower 
Bound

Upper 
Bound

���(X3) ���(18) ���(18)

���(X2) ���(16) ���(18)

���(X1) ���(15) ���(15)

���(X4) ���(8) ���(16)

���(R2) ���(Z) ���(22)
���(R3) ���(Z) ���(23)

top-2

T3

depth 3

R1

���(X1) ���(10)
���(X2) ���(8)
���(X3) ���(5)
���(X4) ���(3)
���(X5) ���(1)

R2

���(X2) ���(8)
���(X3) ���(7)
���(X1) ���(3)
���(X4) ���(2)
���(X5) ���(1)

R3

���(X4) ���(8)
���(X3) ���(6)
���(X1) ���(2)
���(X5) ���(1)
���(X2) ���(0)

(c) SecWorst & SecBest at depth 3. T 3 maintains the sorted

encrypted scores based on their worst scores after depth 3 . The

SecQuery halts (based on line 11) in Algorithm 2

Figure 2: An example of securely computing the top-2 query

for SecQuery. The table has three attributes, and the score

function f is the sum of all the attributes.

the query token tk = SELECT * FROM E(R) ORDERED BY

{PK(i)}i∈M STOP BY k, S1 begins to process the query.

The token tk contains {PK(i)}i∈M which informs S1 which

lists to perform the sequential access. By maintaining an

encrypted list T , which includes items with their encrypted

global best and worst scores, S1 updates the list T depth

by depth. Let T d be the state of the encrypted list T after

depth d. At depth d, S1 first computes the local encrypted

worst/best scores for each item appearing at this depth

by running SecWorst and SecBest. Then S1 securely re-

places the duplicated encrypted objects with large encrypted

worst scores Z by running SecDedup. Next, S1 updates

the encrypted global list from state T d−1 to state T d by

adapting SecUpdate. S1 utilizes EncSort to sort the distinct

encrypted objects with their scores in T d to obtain the first

k encrypted objects which are essentially the top-k objects

based on their worst scores so far. The protocol halts if

at some depth, the encrypted best score of the (k+1)-th
object, Enc(Bk+1), is less than the k-th object’s encrypted

worst score Enc(Wk). This can be checked by calling the

protocol EncCompare(Enc(Wk),Enc(Bk+1)). We describe

the detailed query processing in Algorithm 2.

B. Building Blocks

In this section, we present the detailed description of the

protocols SecWorst, SecBest, SecDedup, and SecUpdate.

1) Secure Worst Score: At each depth, for each encrypted

data item, server S1 should obtain the encryption Enc(W ),
which is the worst score (lower bound) based on the items

at the current depth only. Note that this is different than

the normal NRA algorithm as it computes the global worst

possible score for each encountered objects until the current

depth. We formally describe the protocol setup below:

Protocol SecWorst. Server S1 has the input E(I) =
〈EHL(o),Enc(x)〉, a set of encrypted items H , i.e. H =
{E(Ii)}i=[|H|], where E(Ii) = 〈EHL(oi),Enc(xi)〉, and the
public key pkp. Server S2’s inputs are pkp and skp. SecWorst
securely computes the encrypted worst ranking score based
on L, i.e., S1 outputs Enc(W (o)), where W (o) is the worst
score based on the list H .

The technical challenge here is to homomorphically eval-

uate the encrypted score only based on the objects’ equality

relation. We present the detailed protocol description of

SecWorst in Algorithm 3.

Example 6. (Figure 2a) At depth 1, to compute the worst
score (lower bound) for X1, SecWorst takes the encryptions
Enc(8), Enc(8) at the same depth from columns R2 and R3

and finally outputs the Enc(10) as 10 is the lower bound for
X1 so far after depth 1.

Algorithm 3: SecWorst(E(I), H = {E(Ii)}i∈[|H|], pkp, skp)

S1’s input: E(I), H = {E(Ij)}, pkp
S2’s input: pkp, skp

1 Server S1:
2 Let |H| = m. Generate a random permutation π : [m]→ [m];
3 For the set of encrypted items H = {E(Ij)}, permute each E(Ij) in

H as E(Iπ(j)) = EHL(oπ(j)), Enc(xπ(j)).;
4 for each permuted item in E(Iπ(j)) do
5 compute Enc(bj)← EHL(o)� EHL(oπ(j)), send Enc(bj) to

S2

6 Receive E2
(
ti
)

from S2 and evaluate:

E2
(
Enc(x′i)

)
:= E2

(
ti
)Enc(xi) ·

(
E2

(
1
)E2

(
ti
)−1

)Enc(0)
;

7 Run Enc(x′i)← RecoverEnc(E2
(
Enc(x′i)

)
);

8 Set the worst score Enc(W )← (
∏m

i=1 Enc(x′i)) ;
9 Output Enc(W ).

10 Server S2:
11 for each Enc(bi) received from S1 do
12 Decrypt to get bi, set ti ← (bi = 0 ? 1 : 0);

13 Send E2
(
ti
)

to S1.

14 Procedure RecoverEnc(E2
(
Enc(c)

)
)

15 Server S1:
16 Generate r

$←− ZN , compute and send

E2
(
Enc(c + r)

)← E2
(
Enc(c)

)Enc(r)
to S2.

17 Server S2:
18 Decrypt as Enc(c + r) using skp and send back to S1

19 Server S1:
20 Receive Enc(c+ r), compute Enc(c) = Enc(c+ r) · Enc(r)−1,

and output Enc(c).

2) Secure Best Score: The secure computation for the

best score is different from computing the worst score.

Below we describe the protocol SecBest between S1 and

S2, and Algorithm 4 describes the protocol in detail.
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Protocol SecBest. Server S1 takes the inputs of the public
key pkp, E(I) = 〈EHL(o),Enc(x)〉 for the object o in list Li,
and a set of pointers P = {j}i 	=j,j∈M to the list in ER. The
protocol SecBest securely computes the encrypted best score
at the current depth d, i.e., S1 finally outputs Enc(B(o)),
where B(o) is the best score for the o at current depth.
Example 7. (Figure 2b) At depth 2, to compute the best
score (upper bound) for X4, SecBest takes the encryptions
seen so far, then based on the scores it outputs Enc(23) as
23 is the upper bound for X4 after depth 2.

Algorithm 4: SecBest
(
E(Ii),P, pkp, skp

)
Secure Best Score.

S1’s input: E(Ii) in list Li, P = {j}i �=j , pkp
S2’s input: pkp, skp

1 Server S1:
2 foreach list Li do
3 maintain Enc(xd

i ) for Li, where Enc(xd
i ) is the encrypted score at

depth d.
4 Let l = |{Li}|, i.e. the size of the list, then generate a random

permutation π : [l]→ [l];
5 Permute each Li as Lπ(i) = EHL(oπ(i)), Enc(xπ(i));
6 foreach permuted E(Iπ(i)) do
7 compute Enc(bi)← EHL(o)� EHL(oi)
8 send Enc(bi) to S2 receive E2

(
ti
)

and compute:

E2
(
Enc(x′i)

)
:= E2

(
ti
)Enc(xi) ·

(
E2

(
1
)E2

(
ti
)−1

)Enc(0)
;

9 run Enc(x′i)← RecoverEnc(E2
(
Enc(x′i)

)
) with S2;

10 compute E2
(
Enc(x′di )

)←(
1−∏d

i=1 E2
(
ti
))Enc(xd

i )
;

11 run Enc(x′di )←RecoverEnc(E2
(
Enc(x′di )

)
) with S2;

12 set Enc(Bi)← Enc(x′di ) · (∏l
i=1 Enc(x′i));

13 compute Enc(B)← ∏m
i=1 Enc(Bi) and output Enc(B);

14 Server S2:
15 for Enc(bi) received from S1 do
16 Decrypt to get bi. If bi = 0 set ti = 1, otherwise ti = 0. Send

E2
(
ti
)

to S1.

3) Secure Deduplication: At each depth, some of the

objects might be repeatedly computed since the same objects

may appear in different sorted list at the same depth. S1

cannot identify duplicates since the items and their scores

are probabilistically encrypted. We now present a protocol

that deduplicates the encrypted objects in the following, and,

due to space limit, the detailed protocol SecUpdate can be

found in [33].

Protocol SecDedup. Let the E(I) be an encrypted scored
item such that E(I) = (EHL(o),Enc(W ),Enc(B)), i.e. the
E(I) is associated with EHL(oi), its encrypted worst and
best score Enc(Wi), Enc(Bi). S1’s inputs are public key
pkp, and a set of encrypted scored items Q = {E(Ii)}i∈[�]},
where � = |Q|. At the end of the protocol, S1 outputs a
new list of items E(I ′1), ...,E(I ′�), and there does not exist
i, j ∈ [�] with i 	= j such that oi = oj . Moreover, the new
encrypted list should not affect the final top-k results.
Example 8. (Fig 2b) After scanning depth 2, SecDedup
deduplicates the repeated objects in the list T 2. X1 and
X2 are the repeated objects. SecDedup replaces those the
objects with random ids R1 and R2 and replaces the worst
scores with large number Z so that they do not appear in
the top-2 list.

4) Secure Update: At each depth d, we need to update the

current list of objects with the latest global worst/best scores.

At a high level, S1 has to update the encrypted list Γd from

the state T d−1 (previous depth) to T d, and appends the new

encrypted items at this depth. Let Γd be the list of encrypted

items with the encrypted worst/best scores S1 get at depth

d. Specifically, for each encrypted item E(Ii) ∈ T d−1 and

each E(Ij) ∈ Γd at depth d, we update Ii’s worst score by

adding the worst from Ij and replace its best score with Ij’s

best score if Ii = Ij since the worst score for Ij is the in-

depth worst score and best score for Ij is the most updated

best score. If Ii 	= Ij , we then simply append E(Ij) with

its scores to the list. Finally, we get the fresh T d after depth

d. Due to space limit, the detailed protocol SecUpdate is

described in [33].

Complexity analysis. We analyze the efficiency of query

execution. Suppose the client chooses m attributes for the

query, therefore at each depth there are m objects. At

depth d, it takes S1 O(m) for executing SecWorst, O(md)
for executing SecBest, O(m2) for SecDedup, and O(m2d)
for the SecUpdate. The complexities for S2 are similar.

In addition, the EncSort has time overhead O(m log2 m);
however, we can further reduce to O(log2 m) by adapting

parallelism (see [7]). On the other hand, the SecDupElim
only takes O(u2), where u is the number of distinct objects

at this depth. Notice that most of the computations are

multiplication (homomorphic addition), therefore, the cost

of query is relatively small.

VIII. SECURITY

The following describes the high level intuition of our

security definition for querying encrypted databases:

Informal Definition. No efficient adversary can learn any
partial information about the data or the queries, beyond
what is explicitly allowed by the leakage functions, even
for queries that are adversarially-influenced and generated
adaptively.

Since our construction supports a more complex query

type than searching, the security has to capture the fact

that the adversarial servers also get the ‘views’ from the

data and meta-data during the query execution. Formally,

the CQA security model in our scheme defines a Real and

an Ideal world. In the real world, the protocol between

the adversarial servers and the client executes just like the

SecTopK scheme. In the ideal world, we assume that there

exists two simulator Sim1 and Sim2 who get the leakage

profiles from an ideal functionality and try to simulate

the execution for the real world. We say the scheme is

CQA secure if, after polynomial many queries, no ppt

distinguisher can distinguish between the two worlds only

with non-negligibly probability. Formally, see Definition 9.

Definition 9. Consider the scheme SecTopK =
(Enc,Token, SecQuery) and the following probabilistic
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experiments where E is an environment, C is a client,
S1 and S2 are two non-colluding semi-honest servers,
Sim1 and Sim2 are two simulators, and LSetup, LQuery =
(L1

Query,L2
Query) are (stateful) leakage functions:

Ideal(1λ): E outputs a relation R of size n and sends
to the client C. C submits R to Ftopk, i.e. the ideal top-
k functionality. Ftopk outputs LSetup(R) and 1λ, and gives
LSetup(R), 1λ to Sim1. Given LSetup(R) and 1λ, Sim1 gen-
erates an encrypted ER. C adaptively generates poly. number
of queries (q1, . . . , qm). For each qi, C submits qi to Ftopk,
Ftopk sends L1

Query(ER, qi) to Sim1 and L2
Query(ER, qi) to

Sim2. Finally, C outputs OUT′C , Sim1 outputs OUTSim1
,

Sim2 outputs OUTSim2
.

RealA(1λ): E outputs R of size n and sends to C. C
computes (K,ER) ← Enc(1λ, R) and sends the encrypted
ER to S1. C adaptively generates a poly number of queries
(q1, . . . , qm). For each qi, C computes tki ← Token(K, qi)
and sends tki to S1. S1 runs SecQuery

(
tki,ER

)
with S2.

Finally, S1 sends the encrypted results to C. C outputs
OUTC , S1 outputs OUTS1

, S2 outputs OUTS2
. We say

that SecQuery is adaptively (LSetup,LQuery)-secure against
Chosen Query Attack (CQA) if the following holds:

1) For all E , for all S1, there exists a ppt simulator
Sim1 such that the following two distributions are
computationally indistinguishable

〈OUTS1 ,OUTC〉 � 〈OUTSim1 ,OUT
′
C〉

2) For all E , for all S2, there exists a ppt simulator
Sim2 such that the following two distributions are
computationally indistinguishable

〈OUTS2 ,OUTC〉 � 〈OUTSim2 ,OUT
′
C〉

We formally define the leakage in SecTopK. Let the setup

leakage LSetup = (|R|, |M |). LSetup is the leakage profile

revealed to S1 after the execution of Enc. During query

processing, we allow LQuery = (L1
Query,L2

Query) revealed to

the servers. Note that L1
Query is the leakage function for

S1, while L2
Query is the leakage function for S2. In our

scheme, L1
Query = (QP, Dq), where QP is the query pattern

indicating whether a query has been repeated or not, and

Dq is the halting depth for query q. For any query q, we

define the equality pattern as follows: suppose that there are

m number of objects at each depth,

• Equality pattern EPd(q): a symmetric binary m × m
matrix Md, where Md[i, j] = 1 if there exist oπ(i′) =
oπ(j′) for some random permutation π such that π(i′) =
i and π(j′) = j, otherwise Md[i, j] = 0.

Then, let L2
Query = ({EPd(q)}Dq

i=1), i.e. at depth d ≤ Dq the

equality pattern indicates the number of equalities between

objects. Note that EPd(q) does not leak the equality relations

between objects at any depth in R, i.e. the server never know

which objects are same.

Theorem 10. Suppose the function in EHL is a pseudo-
random function and Paillier encryption is CPA-secure,
then the scheme SecTopK = (Enc,Token, SecQuery) we
proposed is (LSetup,LQuery)-CQA secure.

We skip the proof of Theorem 10 due to space limit. The

proof can be found in the full version of this paper [33].

IX. OPTIMIZATIONS

In this section, we present some optimizations that im-

prove the performance of our protocol. The optimizations

are two-fold: 1) we optimize the efficiency of the protocol

SecDedup at the expense of some additional privacy leakage,

and 2) we propose batch processing of SecDupElim and

EncSort to further improve the SecQuery.

SecDupElim The idea for SecDupElim is that instead of

keeping the same number encrypted items m, SecDupElim
eliminates the duplicated objects. In this way, the number of

encrypted objects gets reduced, especially if there are many

duplicated objects.

Now by adapting SecDupElim, if there are many du-

plicated objects appear in the list, we have much fewer

encrypted items to sort. The SecDupElim leaks additional

information to the server S1. S1 learns the uniqueness
pattern UPd(qi) at depth d, where UPd(qi) denotes the

number of the unique objects that appear at current depth

d. The distinct encrypted values at depth d are independent

from all other depths, therefore, this protocol still protects

the distribution of the original R. In addition, due to the

‘re-encryptions’ during the execution of the protocol, all the

encryptions are fresh ones, i.e., there are not as the same as

the encryptions from ER. Finally, we emphasize that nothing

on the objects and their values have been revealed since they

are all encrypted.

Batch Processing In the query processing SecQuery, we

observe that we do not need to run the protocols SecDupElim
and EncSort for every depth. Since SecDupElim and

EncSort are the most costly protocols in SecQuery, we

can perform batch processing and execute them after a

few depths. Our observation is that there is no need to

deduplicate repeated objects at each scanned depth. If we

perform the SecDupElim after certain depths of scanning,

then the repeated objects will be eliminated, and those

distinct encrypted objects with updated worst and best scores

will be sorted by running EncSort. The protocol remains

correct. We introduce a parameter p such that p ≥ k. The

parameter p specifies where we need to run the SecDupElim
and EncSort in the SecQuery . That is, the server S1 runs

the SecQuery the same as in Algorithm 2, except that every

p depths we run line 8-11 in Algorithm 2 to check if

the algorithm could halt. Furthermore, we can replace the

SecDupElim with the SecDedup in the batch processing for

better privacy but at the cost of some efficiency.
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Security. Compared to the optimization from SecDupElim,

we show that the batching strategy provides more privacy

than just running the SecDupElim alone. For query q,

assuming that we compute the scores over m attributes.

Recall that the UPp(q) at depth p has been revealed to S1

while running SecDupElim, therefore, after the first depth,

in the worst case, S1 learns that the objects at the first depth

is the same object. To prevent this worst case leakage, we

perform SecDupElim every p depth. Then S1 learns there

are p distinct objects in the worst case. After depth p,

the probability that S1 can correctly locate those distinct

encrypted objects’ positions in the table is at most 1
(p!)m .

This decreases fast for bigger p. However, in practice this

leakage is very small as many distinct objects appear every p
depth. Similar to all our protocols, the encryptions are fresh

due to the ‘re-encryption’ by the server. Even though S1 has

some probability of guessing the distinct objects’ location,

the object id and their scores have not been revealed since

they are all probabilistically encrypted.

X. EXPERIMENTS

To evaluate the performance of our protocol, we conduct

a set of experiments using real and synthetic datasets. We

used the HMAC-SHA-256 as the Pseudo-Random Function

(PRF) for EHL encoding and the security parameter for the

Paillier & DJ encryptions is set to 1024. All experiments

are implemented using C++. We implemented the scheme

SecTopK = (Enc,Token, SecQuery), including SecWorst,
SecBest, EncSort, and EncCompare and their optimizations.

We run our experiments on a 24-core machine who serves

as the cloud, running Scientific Linux with 128GB memory

and 2.9GHz Intel Xeon.

DataSets. We use the following real world dataset down-

loaded from UCI ML Repository. insurance: a bench-

mark dataset that contains 5822 customers’ information

on an insurance company and we extracted 13 attributes

from the original dataset, diabetes: a patients’ dataset

containing 101767 patients’ records (i.e. data objects), where

we extracted 10 attributes, and PAMAP: a physical activity

monitoring dataset that contains 376416 objects, and we

extracted 15 attributes. We also generated a synthetic dataset

synthetic with 1 million objects and 10 integer attributes

that takes values from a Gaussian distribution.

A. Evaluation of the Encryption

We implemented the EHL and instantiated the PRF by

using the HMAC keyed secure hash function. We set the

number of secure hash function HMAC to be s = 5, and,

as discussed in the previous section, we obtained negligible

false positive rate in practice. The encryption is independent

of the characteristics of the dataset and depends only on the

size. Therefore, when encrypting each dataset, we used 64
threads on the machine that we discussed before. Table III

shows that, both in terms of time and space, the cost of

the encryption is reasonable and scales linearly to the size

of the database. Finally, we emphasize that the encryption

only incurs a one-time off-line construction overhead.

Dataset
EHL

time (sec.) size (MB)

insurance 0.31 0.65
diabetes 5.50 11.32
PAMAP 20.41 41.82

synthetic 54.22 111.37

Table III: EHL size and time

B. Query Processing Performance

1) Query Evaluation and Methodology: We evaluate the

performance of the secure query processing and their op-

timizations that we discussed before. In particular, we use

the query algorithm without any optimization but with full

privacy, denoted as Qry F; the query algorithm running

SecDupElim instead of SecDedup at each depth, denoted

as Qry E; the one using the batching strategies, denoted

as Qry Ba. We evaluate the query processing performance

using all the datasets and use EHL+ to encrypt all of

the object ids. Notice that the performance of the NRA

algorithm depends on the distribution of the dataset among

other things. To present a clear comparison of the different

methods, we measure the average time per depth for the

query processing, i.e. T
D where T is the total time that the

program spends on executing a query and D is the total

number of depths the program scanned before halting. In

most of our experiments the value of D ranges between

a few hundreds and a few thousands. For each query, we

randomly choose the number of attributes m that are used

for the ranking function ranging from 2 to 8, and we also

vary k between 2 and 20. The ranking function F that we

use is the sum function.

Qry F, Qry E, and Qry Ba. We report the query processing

performance without any query optimization. Figure 3 shows

Qry F query performance. The results are very promising

considering that the query is executed completely on en-

crypted data. For a fixed number of attributes m = 3, the

average time is about 1.30 seconds for the largest dataset

synthetic running top-20 queries. When fixing k = 5,

the average time per depth for all the dataset is below 1.2s.

As we can see that, for fixed m, the performance scales

linearly as k increases. Similarly, the query time also linearly

increases as m gets larger for fixed k. The experiments

show that the SecDupElim improves the efficiency of the

query processing. Figure 4 shows the querying overhead for

exactly the same setting as before. Since Qry E eliminates

all the duplicated the items for each depth, Qry E has been

improved compared to the Qry F above. As k increases, the

performance for Qry E is up to 5 times faster than Qry F
when k increase to 20. On the other hand, fixing k = 5, the
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Figure 3: Qry F performance
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Figure 6: Qry Ba performance

performance of Qry E is up to around 7 times faster than

Qry F as m grows to 20. In general, the experiments show

that Qry E effectively speed up the query time 5 to 7 times

over the basic approach.

We evaluate the effectiveness of batching optimization for

the Qry Ba queries. Figure 6 shows the query performance

of the Qry Ba for the same settings as the previous exper-

iments. The experiments show that the batching technique

further improves the performance. In particular, for fixed

batching parameter p = 150, i.e. every 150 depths we

perform SecDupElim and EncSort in the SecQuery, and we

vary our k from 2 to 20. Compared to the Qry E, the average

time per depth for all of the datasets have been further

improved. For example, when k = 2, the average time for the

largest dataset synthetic is reduced to 74.5 milliseconds.

while for Qry F it takes more than 500 milliseconds. For

diabetes, the average time is reduced to 53 milliseconds

when k = 2 and 123.5 milliseconds when k increases to 20.

As shown in figure 6a, the average time linearly increases

as k gets larger. In Figure 6c, we further evaluate parameter

p. Ranging p from 200 to 550, the experiments show that

the proper p can be chosen for better query performance. In

general, for different datasets, there are different p’s that can

achieve the best query performance. When p gets larger, the

number of calls for EncSort and SecDupElim are reduced,

however, the performance for these two protocols also slow

down as there’re more encrypted items. We finally compare

the three queries’ performance. Table IV shows the query

performance when fixing k = 5, m = 3, and p = 500.

Clearly, as we can see, Qry Ba significantly improves the

performance.

2) Communication Bandwidth and Cost: We evaluate

the communication cost of our protocol. In particular, we

evaluate the communication of the fully secure and unop-

Dataset Qry Ba Qry E Qry F

insurance 28.2 53.8 247.6
diabetes 31.4 73.2 465.5
PAMAP 33.1 75.1 516.8

synthetic 65.4 115.3 959.5

Table IV: Time per depth (milliseconds)

Dataset bandwidth (MB) latency (sec.)
insurance 8.87 1.41
diabetes 12.45 1.99
PAMAP 15.72 2.5152

synthetic 17.3 2.768

Table V: Comm. bandwidth & latency (k = 20, m = 4)

timized Qry F queries on the largest dataset synthetic.

The speed of the network between two clouds depends on

the location and the technology of the clouds. Furthermore,

with recent networking advances [1], we expect that the

connections between clouds (inter-clouds) will be much

higher [8]. However, even if we assume that the commu-

nication between the two clouds is about 50 Mbps, the total

cost of the communication at each depth is below 1 ms!

Thus, communication is not a bottleneck for our protocol.

In Figure 5a, we report the actual bandwidth per depth. In

Figure 5b, we show the total bandwidth when executing the

top-20 by fixing m = 4. Also, assuming a standard 50 Mbps

LAN setting, we show in Table V the total network latency

between servers S1 and S2 when k = 20 and m = 4. Based

on the discussion above, we can see that the communication

cost of our protocol is very moderate for any reasonable

assumptions about the connectivity between the two clouds.

C. Related works on secure kNN

As discussed in the section II, although existing work [18]

on secure kNN does not directly solve our problem, we can

adopt their techniques to obtain top-k results by restricting

our scoring function to be
∑

x2
i (o). We then use as a

query a point with large enough values in each attribute

and run their secure k-nearest-neighbor scheme. In order to

compare the experiment from [18], during our encryption

setup in our SecTopK, the data owner needs to encrypt

the additional squares of the values, i.e. Enc(x2
i (o)), then

the scoring function would simply be the sum of all the

attributes. We emphasize that the execution of the rest of

our protocol remains the same.
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We can now use the results from the experiments in [18].

It is clear that the protocol in [18] is very inefficient. For

example, it is reported that it would take more than 2

hours to return 10 nearest neighbors for a database of only

2, 000 records. On the other hand, with our scheme, we can

return 10 nearest neighbors over a database with the same

characteristics of 1 million records in less than 30 minutes.

Moreover, as [18] needs to sends all of the encrypted records

for each query execution, the communication bandwidth is

very large even for small dataset that has 2,000 records. On

the other hand, in our approach, we show that the bandwidth

cost is low and will not affect the performance much.

XI. CONCLUSION

We propose the first secure scheme that executes top-k
ranking queries over encrypted databases. First, we describe

a secure probabilistic data structure called encrypted hash list

(EHL). We then propose a number of building blocks that

can securely compute top-k objects based on their ranks.

We also provide a clean and formal security analysis of our

proposed scheme where we explicitly state the leakage of

various schemes. We experimentally evaluated using real-

world datasets to show the scheme is efficient and practical.
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